
Prof. Dr.-Ing. Peter Liggesmeyer TU Kaiserslautern
M. Sc. Sebastian Müller Dept. of Computer Science
 AG Software Engineering: Dependability

Software Quality Assurance (WS16/17)

 Problem Set 6

Due: in exercise, 25.01.2017

Problem 1: Data Flow Anomaly Analysis

A software company develops software packages for commercial animal housing. A particular function,
which is implemented in the C programming language, computes the daily amount of feed for different
animal species depending on their individual weight.
Until now, this function was only part of a software package for farms and worked failure-free since
years. Recently, it is also included in a software package for zoological gardens and it produces wrong
output in some cases. By performing a data flow analysis, the faults should be revealed.

/* Own data type for enumeration of animal species */
typedef enum {COW, HORSE, PIG, ELEPHANT} Animal_A;

/* Function for determining the daily amount of feed depending
 * on the animal species and the individual weight
 */
01 float feedamount(Animal_A species, float weight)
02 {
03 float amount, factor;
04 switch (species)
05 {
06 case COW:
07 {
08 factor = 0.05;
09 break;
10 }
11 case HORSE:
12 {
13 factor = 0.1;
14 break;
15 }
16 case PIG:
17 {
18 factor = 0.02;
19 break;
20 }
21 } // end switch
22 amount = factor * weight;
23 return amount;
24 } // end feedamount

a) What mistakes were performed and how would the consequences have been avoided?
b) Perform a data flow anomaly analysis for the operation feedamount.

Problem 2: Data Flow Anomaly Analysis

Consider the following Java implementation of the operation ALL_POSITIVE which checks whether all
elements of a one-dimensional array are positive. As parameters, the field and its length are given.

01 boolean ALL_POSITIVE(int[] array,int len) {
02 boolean result;
03 int i,tmp;
04 i=0;
05 result=true;
06 while (i<len&&result) {
07 tmp=array[i];
08 if (tmp<=0)
09 result=false;
10 i++;
11 }
12 return result;
13 }

Perform a data flow anomaly analysis for the operation ALL_POSITIVE.

Problem 3: Slicing

Create static backward slices for the last occurrence of variables result, mode and this.mode.

01 public class Switch {
02 private boolean mode;
03 public Switch() {
04 init();
05 }
06 private void init() {
07 mode=true;
08 }
09 public boolean toggle(boolean mode) {
10 boolean result;
11 if((this.mode&&mode)||(!this.mode&&!mode))
12 result=true;
13 else
14 result=false;
15 if (this.mode)
16 this.mode=!mode;
17 else
18 mode=mode;
19 return result;
20 }
21 }

